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Previous results relating the one-dimensional random field Ising model to a 
discrete stochastic mapping are generalized to a two-valued correlated random 
(Markovian) field and to the case of zero temperature. The fractal dimension of 
the support of the invariant measure is calculated in a simple approximation 
and its dependence on the physical parameters is discussed. 
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1. I N T R O D U C T I O N  

The calculation of the partition function of the one-dimensional Ising chain 
in a static random magnetic field can be reduced to the problem of one 
spin in an auxiliary local random field ~ 

E 1 Z =  ~ exp fi 2 (Js.s.+ l + h.s.) 
{s,} n = 1 

SN n= 1 

where the local random field ~n is governed by the discrete stochastic 
mapping 

~ , = h , + A ( ~ , _ l ) = f ( h , , ~ , _ ~ ) ,  40=0, n = 1, 2,..., N (2) 

Contribution to the symposium "Statistical Mechanics of Phase Transit ions--Mathematical  
and Physical Aspects," T~ebofi, CSSR, September 1-6, 1986. 
1 Sektion Physik der Karl-Marx-Universit~it Leipzig, Karl-Marx-Platz, Leipzig, 7010, German 

Democratic Republic. 
2 Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, 

USSR. 

939 

0022-4715/87/0600-0939505.00/0 �9 1987 Plenum Publishing Corporation 



940 Behn and Zagrebnov 

Here 

A(x) = (2fl) 1 ln[ch ~(x+J)/ch f i ( x - J ) ]  (3) 

B(x) = (2~)-1 ln[4 ch ~(x + J) ch ~(x - J ) ]  (4) 

The probability density P(x) of the local random field {~ can be used to 
calculate physical quantities such as the free energy, the magnetization, or 
the Edwards-Anderson parameter. (2~ 

Obviously, the properties of the stochastic mapping depend on the 
nature of the driving process h~ and the shape of the function A. 

For an identical independent distributed two-valued magnetic field it 
was previously shown (2-5) for nonzero temperatures that for small exchange 
J the support of P(x) has a fractal structure, whereas for large J the sup- 
port is continuous. For a continuous distribution the support is the 
continuum.(5) 

In this contribution the previous considerations are extended to a 
Markovian two-valued magnetic field and to the case of zero temperature. 
For T =  0 the support consists of a finite number of points and the theory 
of finite-state Markov chains is applied to determine the invariant measure. 
For T r  0 the fractal dimension of the support is calculated in a simple 
approximation and its dependence on the physical parameters (h, J, T) is 
discussed. 

2. GENERALIZATION TO M A R K O V I A N  FIELDS 

If the external magnetic field hn is a first-order Markov chain, the 
auxiliary random field ~,, is a second-order Markov chain. Introducing the 
vector (~,,, h,), we have for the Chapman Kolmogorov equation for 
the joint probability density p,(x, tl) 

p,(x,q)=f dtf f dx'T(tllq')pn_l(x',tf)a(x-rl-A(x')) (5) 

where the transient probability density for the external magnetic field is, 
e.g., 

T(t/I ~/') = ~6(~ / + t/') + (1 - ~ )  6 ( t / -  ~/') 

is the probability that hn changes sign from site n to n + 1. 
For an uncorrelated external field (~ = 1/2) one finds with T(t/lq' ) = 

p(t/) the Chapman-Kolmogorov equation for a first-order Markov chainJ 2) 
For a constant external field (~=0)  one reproduces with T(t/lt/' ) = 

6(~/-q ' )  and p ( t / ) = 6 ( t / - h )  the fixed-point result p*(x,h)=6(x-x*), 
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where x* =h+A(x*). ~1t An alternating external field with period one is 
obtained if ~ = 1. 

The generalization to Markovian  fields allows one to interpolate 
between these limiting cases. 

3. Z E R O - T E M P E R A T U R E  PROPERTIES 

For  zero temperature the function A(x) that governs (2) is piecewise 
linear, 

- J  for x < - J  

A(x)= x for Ixl~<J (6) 

J for x > J  

As a consequence, for a finite-state driving process, the mapping (2) 
generates for a given J only a finite number  of possible values, so that the 
fractal dimension of the support  at zero temperature is zero. 

For  an external field taking only the values _+h the mapping (2) 
generates only the values 

x(m, +_J)=mh+_J, x(m, O)=mh (7) 

where the integer m has to be chosen such that 

x ~ [ h - J , h + J ] w [  h + J , - h - J ]  (8) 

These possible states can be classified into essential and inessential states 
according to the usual theory of finite-state Markov chains. This 
classification depends in general on the value of c~. 

The measure consists of a sum of weighted &functions located at the 
points {xi, hi}, which constitute the space of states. Introducing the vector 
of the weights w(n)= {w}")}, one has that the C h a p m a n - K o l m o g o r o v  
equation (5) converts into the matrix equation 

w(") = Dw (n-l) (9) 

where the matrix elements of D are ~ if xl")=f(h, X}"-1)=f( -h, ")) and 
1 - c~ if xl ~) =f(h, x}"- l)=f(h, -)), and zero otherwise. 

The invariant measure corresponds to the fixed points of (9) given by 
(1 - D ) w * =  0 or by w * =  limn~ oo Dnw (~ (if this limit exists). The number  
of fixed-point solutions is equal to the number  of disconnected sets of 
essential states. 

For  example, we consider the case 0 < J < hi2, where we have the flow 
diagram shown in Fig. 1. For  0 < c ~ <  1 there are four essential states 

822/47/5-6-22 
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Fig. 1. Flow diagram of the mapping (2) for zero temperature and O<J<h/2. The solid 
(open) arrows denote the action of (2) for the realizations h, = h (h,, = -h). 

{(h+J,h), (h-J,h), ( - h + J , - h ) ,  ( - h - J , - h ) } ,  which m a p  
exclusively into themselves,  whereas  h and  - h  are  inessential ,  since there is 
a net outf low into essential  states. The  t rans i t ion  mat r ix  between the four 
essential  states is 

D= ( 1-c~  1 - e  0 0 

0 0 c~ c~ 

c~ e 0 0 

0 0 1 - ~  1 - ~  

(10) 

The unique  fixed po in t  of (9) is w * = ( 1 - e ,  e, c~, 1 - c ~ ) r / 2 .  F o r  e = 0 ,  D 
becomes  i dempo ten t  and  (9) has two different fixed points  co r re spond ing  
to the t r app ing  states •  + J). F o r  e = 1 the process  oscil lates between 

- h + J and  h - J and  we observe tha t  limn ~ o~ D n does no t  exist. 
F o r  zero t empe ra tu r e  and  nonze ro  mean  external  field <hn> = h o  a 

s imilar  analysis  shows tha t  for h 0 < h the n u m b e r  of  states is en larged  com- 
pa red  with the case h 0 = 0 ,  whereas  for h~<h o a comple te ly  different 
behav io r  is found:  there are only two essential  states, J+ho-h and 
J+ho+h. It  is wor thwhi le  to men t i on  tha t  the la t te r  holds  also for the 
per iod ic  case c~ = 1. A c o m p a r i s o n  with ze ro - t empera tu re  results ob ta ined  
by  a different m e t h o d  (6) is in p repa ra t ion .  
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4. N O N Z E R O - T E M P E R A T U R E  PROPERTIES 

For nonzero temperature A(x) is infinitely many times differentiable 
and as a consequence (2) generates for 0 < e < 1 an infinite number of 
possible values. These values can be related to infinite sequences of plus 
and minus signs in the following way. 

We denote the result of the nth iteration of (2) starting from the initial 
value 30 = Y by 

x~l,o 2 ....... ;y = f ( h l ,  f(h2, f(..., f(hn, y) . . .  ))) 

where {al ..... an} is the sequence of signs of a given realization of the 
driving process {hi ..... hn}. The result of infinitely many iterations [not  
depending on the initial value y, because of axf(h, x) < 1 ] is denoted by x~ 
where 6 symbolizes an infinite sequence of signs. 

Hence, the support of the probability density is the set S =  {x, ) ,  
which is an attractor whose basin of attraction is R 1. Any two points x~,, 
x,,, ~ S can be connected by (2). 

It can be shown that starting from an arbitrary initial density Po the 
sequence (pn} converges to the unique ergodic invariant measure p..~7) 

For  zero mean external field it can be seen by construction that S c  
I - x * ,  x*] ,  where x* is the fixed point of (2) for h,,=h. Obviously, there 
are parameters for which there are no states x~ between the points 
x+; , .  = f ( h ,  - x * )  and x ;,,. = f ( - h ,  x*), i.e., there is a gap of the width 
(cf. Fig. 2) 

A = x + ; _ ~ . - x  ~. --- 2 ( 2 h -  x*) (11) 

Applying (2), this gap produces two gaps of the second generation and so 
on. The two endpoints of one of the 2 ~- ~ gaps in the nth generation can be 
represented by 

Xo- l , . . . ,O - n_  1, + ; - -  O'* and X f f l , . . . , ~ n _ l ,  - -  ; o ' *  

We call the finite sequence of n (different) signs {o-~,...,a,_z, _+ } the 
"head" and the infinite sequence of identical signs { ~ 6 " }  the "tail." The 
set of endpoints is countable. On the other hand, it is dense in S: An 
endpoint is as close to x ,  as long as its "head" is chosen in such a way that 
it coincides with the corresponding signs of 6. Thus, in an arbitrary 
neighborhood of x ,  we can find a gap. 

Therefore, the support is nowhere dense on [ - x * , x * ]  and con- 
stitutes a fractal, but it is not self-similar in a simple way like the Cantor 
set. 

Replacing A(x) by (x* - h) x/x* (cf. dashed lines in Fig. 2), the above 
procedure gives instead of S the Cantor set C~ with the largest gap equal 



944 Behn and Zagrebnov 

x,, h+A(x) 

. . . . . . . . . .  _ . . . . . .  .-  . . . . . . . . . . .  

2nd6Ap il / 1 st GAP : Z nd 6AP 

-h + A(x) 

Xn-4 

Fig. 2. The construction of the support S of the mapping (2) for nonzero temperature and 
positive gap. The dashed lines correspond to the Cantor approximation. For an alternating 
field (e = 1), S reduces to an attracting orbit (dotted line). 

to A. Deviations of S from C~ are due to the nonlinearity of A(x). In this 
approximation one obtains the fractal dimension (cf. Fig. 3) 

d f l  for 3 ~<0 
/~ (ln2/ln[x*/(x*-h)] for 3 > 0  

(12) 

The line A(h, T ) =  0 separates the (h, T) plane into two regions charac- 
terized by the fractal dimension of the support  (cf. Fig. 4). For  zero 
temperature the support  consists of a finite number  of points, so that d i =  0. 
In the gapless region there is a discontinuous transition for T-+ 0, whereas 
in the fractal region the transition is continuous. For  T ~  ~ the fractal 
dimension also reduces to zero. 

Since we are dealing with the one-dimensional Ising model, there are 
no phases in the thermodynamic sense, but there are parameters such as d i 
or the Liapunov exponent which behave as functions of (h, T, J)  like "order 
parameters" and may indicate, e.g., a drastic change in the dynamics. 
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df 

1 - -  f , 

/t ~176176 
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g .~176 

/ /  ....Y"" 
f ~ .'~176176 

/g ~176176 

0.5 - / /  .Y"  /5h:1 
/ / . . . . . ' " "  

0 I I =__ 
0 0.5 1 03 

]Fig. 3. Fracta] dimension versus /~J for ~h = 1 calculated (- -) in zeroth-order perturbation 
theory, I2) ( - - )  by an iteration procedure, 18) and (.--) in the Cantor approximation. The arrow 
indicates the value of/3J for which the gap vanishes. 

Fig. 4. 

2J 
In3 

" - d f = 0  A>0 

0 < d f < l  B 

0 J J=l h 
df=0 " 

Qualitative behavior of df as a function of temperature and magnetic field |br a 
given J. 
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